Concept

Work = Rate
$$\cdot$$
 Time

Work = the number of jobs to be completed (1 job = 1 work)

Rate = how fast the work can be done (always a ratio)

Time = how long someone is working to complete the job(s)

**Solving the equation Work = Rate · Time for Rate yields the following definition:

$$Rate = \frac{Work}{Time} = \frac{1 \ job \ completed}{time \ to \ complete \ the \ job}$$

We will use this definition to write expressions for Rate in what are often called "Work Problems."

Concept

First, we are going to learn how to write expressions for Rate.

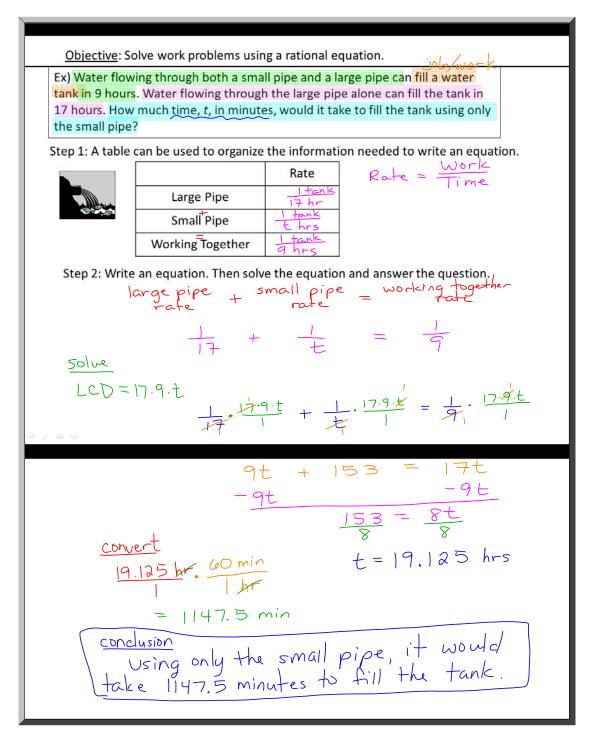
1. If Carlos can mow the back lawn in 30 minutes, what is his rate?

$$Rate = \frac{1 \ lawn \ mown}{30 \ minutes}$$

This also means: an average of $\frac{1}{30}$ of the lawn is moved each minute

2. Samantha can paint a new shed in 5 hours. What is the rate at which she paints the shed?

$$Rate = \frac{1 \ shed \ painted}{5 \ hours}$$


This also means: an average of $\frac{1}{5}$ of the shed is painted each hour

3. If Thomas can run a mile in 7.2 minutes, what is his rate?

$$Rate = \frac{1 \ mile \ run}{7.2 \ minutes}$$

This also means: an average of about 0.14 of the mile is run each minute

Practice) Kevin can clean a large aquarium tank in about 7 hours. When Kevin and Lara work together, they can clean the tank in 4 hours. How long would it take, in hours and minutes, for Lara to clean the tank if she worked by herself?

	Rate
Kevin	$\frac{1}{7}$
Lara	$\frac{1}{t}$
Working Together	$\frac{1}{4}$

Kevin's work + Lara's work = 1 clean tank

$$\frac{1}{7} + \frac{1}{t} = \frac{1}{4}$$

$$\frac{1}{7} \cdot (28t) + \frac{1}{t} \cdot (28t) = \frac{1}{4} \cdot (28t)$$

$$4t + 28 = 7t$$

$$28 = 3t$$

$$t = \frac{28}{3} = 9\frac{1}{3} \text{ hours} = 9 \text{ hours } 20 \text{ minutes}$$
$$\left(\frac{1}{3} \text{ hour} \cdot \frac{60 \text{ min}}{1 \text{ hour}} = 20 \text{ min}\right)$$

If Lara worked by herself, it would take her 9 hours and 20 minutes to clean the tank.

Objective: Solve work problems using a rational equation. Ex) Nathan can paint a room in 8 hours. His brother John would need 12 hours to paint the same room. If they work together, how long will it take, in hours and minutes, to paint the room?					
	Rate _{Nathan} room 8 hr	Rate _{John}	=Rate _{together}		
<u>solve</u> .	184.2	+ 1 12 4.3	= +		
LCD = 4.		1.34t	+ 12. 21+	= 1.24/	
If the work toget	brothers her, it	3+	+ 2t $5t = 2t$.	
will take 48 minutes	4 hours			or 4.8 hr omin = 48 min	

Practice) One incinerator can process a day's garbage in 14 hours. When the first incinerator is broken, a second incinerator can process a day's garbage in 20 hours. If both incinerators are working, how many hours, to the nearest tenth, will it take to process a day's garbage?

$Rate_{Incinerator 1}$	Rate _{Incinerator 2}	Rate _{together}	
1	1	1	
14	20	\overline{t}	

Incinerator 1's rate + Incinerator 2's rate = rate together

$$\frac{1}{14} + \frac{1}{20} = \frac{1}{t}$$

$$\frac{1}{14} \cdot (140t) + \frac{1}{20} \cdot (140t) = \frac{1}{t} \cdot (140t)$$

$$10t + 7t = 140$$

$$17t = 140$$

$$t \approx 8.2 \text{ hours}$$

If both incinerators are working it will take about 8.2 hours to process a day's garbage.

Closure

Explain how you can recognize when you are reading a "Work Problem."

A "Work Problem" can be recognized because the situation describes an activity being completed by two or more people/objects in a certain amount of time.