Objective: Find domain and average rate of change of a rational function

Concept

The domain of a rational function includes all real numbers except where the function is said to be undefined. A rational function is undefined for any value of x that makes the denominator equal to 0 . These values of x also correspond to where the function has holes or vertical asymptotes.

To find the domain of a function $f(x)$ algebraically:

1. Determine the values of x for which the function is undefined. Set the denominator equal to 0 and solve the equation for all values of x. These will be the values excluded from the domain of the function.
2. Write the domain using the specified notation.

Objective: Find domain and average rate of change of a rational function

Ex) Find the domain of the function. Use both inequality and interval notation.

$$
\begin{aligned}
& f(x)=\frac{3 x}{x^{2}-3 x} \longrightarrow x^{2}-3 x \neq 0 \\
& x(x-3)=0 \\
& x=0 \quad x-3=0 \\
& x \neq 0 \quad x \neq 3
\end{aligned}
$$

domain
inequality $x<0$ or $0<x<3$ or $x>3$ interval $(-\infty, 0) \cup(0,3) \cup(3, \infty)$

Objective: Find domain and average rate of change of a rational function

Ex) Find the domain of the function. Use both inequality and interval notation.

$$
\begin{aligned}
\left.f(x)=\frac{x+5}{x^{2}+4 x-5} \rightarrow \quad \begin{array}{r}
x^{2}+4 x-5 \neq 0 \\
(x+5)(x-1)
\end{array}\right) \\
\\
\text { excluded } x+5=0 \quad x-1=0 \\
x \neq-5 \quad x \neq 1 \leftarrow \text { excluded } \\
\text { values }
\end{aligned}
$$

domain
inequality $x<-5$ or $-5<x<1$ or $x>1$ interval $(-\infty,-5) \cup(-5,1) \cup(1, \infty)$

Objective: Find domain and average rate of change of a rational function

Concept

Average Rate of Change

The average rate of change is the average change between y values for each unit of x over a specific continuous interval of a function.

The average rate of change for an interval corresponds to the slope of the line through the two points at the ends of the interval. This line is called the secant line.

Average rate of change over $[-8,-5]: \frac{\Delta y}{\Delta x}=\frac{6}{3}=2$

Objective: Find domain and average rate of change of a rational function

Concept

To find the average rate of change of a function $f(x)$ over a continuous interval $\left[x_{1}, x_{2}\right]$:

1. Calculate the corresponding function values for x_{1} and x_{2}. (i.e. Find $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$.)
2. Calculate the average rate of change over the interval: $\frac{\Delta f}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$

Objective: Find domain and average rate of change of a rational function
Ex) The function $D=\frac{50}{m}$ represents the density, in cm^{3} / g, of an object with a volume of 50 cubic centimeters and a mass of m grams. Find the average change in the object's density from a mass of 5 to 16 grams.
(1) function $D=\frac{50}{m}$
(2) interval $[5,16]$ grams

$$
\left[x_{1}, x_{2}\right]
$$

$$
\left[m_{1}, m_{2}\right]
$$

(3) AROC

$$
\begin{aligned}
& \frac{\Delta D}{\Delta m}=\frac{D(16)-D(5) \mathrm{cm}^{3} / \mathrm{g}}{16-5 \text { grams }} \\
& =\frac{\left(\frac{50}{16}-\frac{50}{5}\right) \mathrm{cm}^{3} / \mathrm{g}}{(16-5) \mathrm{grams}}
\end{aligned}
$$

$=-0.625 \mathrm{~cm}^{3} / \mathrm{g}$ per gram of mass
The average change in the object's density from 5 to 16 g is a decrease of $0.625 \mathrm{~cm}^{3} / \mathrm{g}$ per gram of mass.

Objective: Find domain and average rate of change of a rational function

Closure

Whenever you are finding an average rate of change for a specific interval of a function, the calculation is the same as the slope of the secant line.
The mathematical formula is $\frac{\Delta f}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$ or $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.

