Concept

Steps to Solve a Trigonometric Equation that Includes a Double-Angle

- 1. Use a Double-Angle Identity to rewrite the double angle expression.
- 2. Solve the Equation.

Given a Quadratic Structure:

- 1. Write the equation in standard form.
- 2. Use a quadratic strategy.
 - 1. Square Root Property
 - 2. Factoring
 - 3. Quadratic Formula
- 3. Find the angle measure(s) that correspond to the function value(s).

Ex) Solve $\sin 2x \cos x - \sin x = 0$ for $0 \le x < 2\pi$.

$$\bigcirc 2\sin x \cos x - \sin x = \bigcirc$$

$$Sinx = 0 \qquad Q\cos^2 x - 1 = 0$$

$$3 \qquad \chi = 0, T$$

$$\cos^2 x = \frac{1}{2}$$

$$\int \cos^2 x = \pm \sqrt{\frac{1}{2}}$$

$$\cos X = \pm \sqrt{2}$$

(3)
$$x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$$

solutions
$$\chi = 0, \frac{\pi}{4}, \frac{3\pi}{4}, \pi, \frac{5\pi}{4}, \frac{7\pi}{4}$$

Ex) Solve
$$\cos 2x + \cos x = 0$$
 for $[0, 2\pi)$.

(2)
$$2\cos^2 x + \cos x - 1 = 0$$

$$(2005X - 1)(\cos X + 1) = 0$$

$$2\cos x - 1 = 0 \qquad \cos x + 1 = 0$$

$$\cos x = \frac{1}{2} \qquad \cos x = -1$$

$$3) \quad \chi = \frac{\pi}{3}, \frac{5\pi}{3} \qquad \chi = \pi$$

Solutions.
$$X = \frac{TT}{3}, TT, \frac{5\pi}{3}$$

<u>Closure</u>

Brandon needs to solve the equation $\cos 2x + 5\sin x = 4$. Which Double-Angle Identity should Brandon use? Explain your reasoning.

Brandon should use the Double-Angle Identity $1-2\sin^2 x$ so that the terms of the equation will all be powers of $\sin x$.

<u>Concept</u>

<u>Double-Angle Identities</u>	
$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$	
$cos2\alpha = 1 - 2sin^2\alpha$	
$\cos 2\alpha = 2\cos^2\alpha - 1$	