Objective: Solve Trigonometric Equations Using Double-Angle Identities.

Concept

Steps to Solve a Trigonometric Equation that Includes a Double-Angle

1. Use a Double-Angle Identity to rewrite the double angle expression.
2. Solve the Equation.

Given a Quadratic Structure:

1. Write the equation in standard form.
2. Use a quadratic strategy.
3. Square Root Property
4. Factoring
5. Quadratic Formula
6. Find the angle measure(s) that correspond to the function value(s).

Objective: Solve Trigonometric Equations Using Double-Angle Identities.
Ex) Solve $\sin 2 x \cos x-\sin x=0$ for $0 \leq x<2 \pi$.
(1)

$$
\begin{aligned}
& 2 \sin x \cos x \cdot \cos x-\sin x=0 \\
& 2 \sin x \cos ^{2} x-\sin x=0 \quad \text { \& quadratic } \\
& \text { structure }
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \sin x\left(2 \cos ^{2} x-1\right)=0 \\
& \sin x=0 \quad 2 \cos ^{2} x-1=0
\end{aligned}
$$

(3) $x=0, \pi$

$$
\begin{aligned}
& \cos ^{2} x=\frac{1}{2} \\
& \sqrt{\cos ^{2} x}= \pm \sqrt{\frac{1}{2}} \\
& \cos x= \pm \frac{\sqrt{2}}{2}
\end{aligned}
$$

$$
\text { (3) } x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}
$$

solutions $x=0, \frac{\pi}{4}, \frac{3 \pi}{4}, \pi, \frac{5 \pi}{4}, \frac{7 \pi}{4}$

Ex) Solve $\cos 2 x+\cos x=0$ for $[0,2 \pi)$.
(1)

$$
2 \cos ^{2} x-1+\cos x=0 \quad \text { quadratic struction }
$$

(2)

$$
\begin{array}{lr}
2 \cos ^{2} x+\cos x-1=0 \\
(2 \cos x-1)(\cos x+1) & =0 \\
2 \cos x-1=0 & \cos x+1=0 \\
\cos x=\frac{1}{2} & \cos x=-1
\end{array}
$$

(3) $x=\frac{\pi}{3}, \frac{5 \pi}{3} \quad x=\pi$

$$
\text { solutions } x=\frac{\pi}{3}, \pi, \frac{5 \pi}{3}
$$

Objective: Solve Trigonometric Equations Using Double-Angle Identities.

Closure

Brandon needs to solve the equation $\cos 2 x+5 \sin x=4$. Which Double-Angle Identity should Brandon use? Explain your reasoning.

Brandon should use the Double-Angle Identity $1-2 \sin ^{2} x$ so that the terms of the equation will all be powers of $\sin x$.

Objective: Solve Trigonometric Equations Using Double-Angle Identities.
Concept

Double-Angle Identities	
$\sin 2 \alpha=2 \sin \alpha \cos \alpha$	$\cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha$
$\tan 2 \alpha=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}$	$\cos 2 \alpha=1-2 \sin ^{2} \alpha$
$\cos 2 \alpha=2 \cos ^{2} \alpha-1$	

