Objective: Find the Six Trigonometric Ratios of an Angle
Concept
You already know the three primary trigonometric ratios: sine, cosine, and tangent. The reciprocal of each of these ratios is also an important trigonometric ratio. The reciprocal trigonometric ratios are cosecant (csc), secant (sec) and cotangent (cot).

For a right triangle with acute angle θ (theta), the six trigonometric ratios of θ are:

Objective: Find the Six Trigonometric Ratios of an Angle

Concept

Another way of looking at the reciprocal trigonometric ratios is:

$$
\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}
$$

Objective: Find the Six Trigonometric Ratios of an Angle
Ex) Find the six trigonometric ratios of angle θ in simplest form.
(1)

2

$$
\begin{aligned}
& \sin \theta=\frac{4}{\frac{4}{5}} \\
& \cos \theta=\frac{\text { adj }^{3}}{\frac{3}{5}} h_{\text {hp }} . \\
& \sec \theta=\frac{5}{3} \\
& \tan \theta=\frac{{ }^{\text {opp }} . j}{\operatorname{ad} j} \\
& \cot \theta=\frac{3}{4}
\end{aligned}
$$

Objective: Find the Six Trigonometric Ratios of an Angle
Ex) Find the six trigonometric ratios of angle θ in simplest form.
(1)

(2)

$$
\begin{aligned}
& \sin \theta=\frac{3}{\sqrt{13}} \cdot \frac{\sqrt{13}}{\sqrt{13}}=\frac{3 \sqrt{13}}{13} \\
& \cos \theta=\frac{2}{\sqrt{13}}-\frac{\sqrt{13}}{\sqrt{13}}=\frac{2 \sqrt{13}}{13}
\end{aligned}
$$

$$
\tan \theta=\frac{3}{2}
$$

$$
\csc \theta=\frac{\sqrt{13}}{3}
$$

$$
\sec \theta=\frac{\sqrt{13}}{2}
$$

$$
\cot \theta=\frac{2}{3}
$$

Objective: Find the Six Trigonometric Ratios of an Angle
Ex) Find the six trigonometric ratios of angle θ in simplest form.

(3)

$$
\begin{array}{ll}
\sin \theta=\frac{3}{4} & \csc \theta=\frac{4}{3} \\
\cos \theta=\frac{\sqrt{7}}{4} & \sec \theta=\frac{4}{\sqrt{7}}=\frac{4 \sqrt{7}}{7} \\
\tan \theta=\frac{3}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}}=\frac{3 \sqrt{7}}{7} & \cot \theta=\frac{\sqrt{7}}{3}
\end{array}
$$

Objective: Find the Six Trigonometric Ratios of an Angle
Ex) Find the six trigonometric ratios of angle θ in simplest form.
(1)
label opp $2=b$
(2) Find the hyp.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 4^{2}+2^{2}=c^{2} \\
& 20=c^{2} \\
& c=\sqrt{20}=2 \sqrt{5}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \sin \theta=\frac{12}{2 \sqrt{5}}=\frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{\sqrt{5}}{5} \\
& \cos \theta=\frac{\frac{2}{2}}{2 \sqrt{5}}=\frac{2}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{2 \sqrt{5}}{5} \\
& \tan \theta=\frac{2}{24}=\frac{1}{2} \\
& \csc \theta=\frac{\sqrt{5}}{1}=\sqrt{5} \\
& \sec \theta=\frac{\sqrt{5}}{2} \quad \cot \theta=\frac{2}{1}=2
\end{aligned}
$$

Objective: Find the Six Trigonometric Ratios of an Angle

Closure

Match each trigonometric ratio to its reciprocal.

