Concept

Properties of Rational Exponents

For all nonzero real numbers \boldsymbol{a} and \boldsymbol{b} and rational numbers \boldsymbol{m} and \boldsymbol{n}

Words	Numbers	Algebra
Product of Powers Property: to multiply powers with the same base, add the exponents	$12^{\frac{1}{2}} \cdot 12^{\frac{3}{2}} = 12^{\frac{1}{2} + \frac{3}{2}} = 12^2 = 144$	$a^m \cdot a^n = a^{m+n}$
Quotient of Powers Property: to divide powers with the same base, subtract the exponents	$\frac{125^{\frac{2}{3}}}{125^{\frac{1}{3}}} = 125^{\frac{2}{3} - \frac{1}{3}} = 125^{\frac{1}{3}} = 5$	$\frac{a^m}{a^n} = a^{m-n} \text{ or } \frac{a^m}{a^n}$ $= \frac{1}{a^{n-m}}$
Power of a Power Property: to raise one power to another, multiply the exponents	$\left(8^{\frac{2}{3}}\right)^3 = 8^{\frac{2}{3} \cdot 3} = 8^2 = 64$	$(a^m)^n = a^{m \cdot n}$
Power of a Product Property: to find a power of a product, distribute the exponent	$(16 \cdot 25)^{\frac{1}{2}} = 16^{\frac{1}{2}} \cdot 25^{\frac{1}{2}} = 4 \cdot 5$ $= 20$	$(ab)^m = a^m b^m$
Power of a Quotient Property: to find a power of a quotient, distribute the exponent	$\left(\frac{16}{81}\right)^{\frac{1}{4}} = \frac{16^{\frac{1}{4}}}{81^{\frac{1}{4}}} = \frac{2}{3}$	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$

Concept

Properties of Rational Exponents

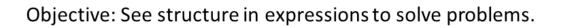
For all nonzero real numbers a and b and rational numbers m and n

Words	Numbers	Algebra
Negative Exponent Property: moving a power from numerator to denominator or vice versa changes the sign on the exponent	$36^{-\frac{1}{2}} = \frac{1}{36^{\frac{1}{2}}} = \frac{1}{6}$ $\frac{1}{36^{-\frac{1}{2}}} = \frac{36^{\frac{1}{2}}}{1} = \frac{6}{1} = 6$	$a^{-n} = \frac{1}{a^n} \text{ or } \frac{1}{a^{-n}} = a^n$
Zero Exponent Property: any monomial to a power of 0 is equal to 1	$(3)^0 = 1$	$(a)^0 = 1$

Rewrite the expression in simplest form.

$$\frac{x^5 y^{-1} z}{x^8 y^6 z^{-3}}$$

$$\frac{x^5 z \cdot z^3}{x^8 y^6 y^1} = \frac{z^{1+3}}{x^{8-5} y^{6+1}} = \boxed{\frac{z^4}{x^3 y^7}}$$



$$2^{-3} = ?$$

$$\frac{1}{2^3} = \boxed{\frac{1}{8}}$$

Concept

Rational and irrational numbers expressed in radical form can also be expressed with fractional exponents. When the number has a fractional exponent, it is said to be in <u>rational exponent</u> form.

$$b^{\frac{1}{n}} = \sqrt[n]{b}$$

and

$$b^{\frac{p}{n}} = \sqrt[n]{b^p} \text{ or } b^{\frac{p}{n}} = \left(\sqrt[n]{b}\right)^p$$

Simplify each numerical value as much as possible.

$$\left(\frac{32}{243}\right)^{\frac{2}{5}}$$

$$(512)^{-\frac{2}{3}}$$

$$\frac{\left(\sqrt[5]{32}\right)^2}{\left(\sqrt[5]{243}\right)^2} = \frac{\left(2\right)^2}{\left(3\right)^2} = \boxed{\frac{4}{9}}$$

$$\left(\sqrt[3]{512}\right)^{-2} = \left(8\right)^{-2} = \frac{1}{8^2} = \boxed{\frac{1}{64}}$$

$$\frac{1}{512^{\frac{2}{3}}} = \frac{1}{\left(\sqrt[3]{512}\right)^2} = \frac{1}{8^2} = \frac{1}{64}$$

Concept

The Quadratic Function

standard form

$$f(x) = ax^2 + bx + c$$

•vertex =
$$\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$$

Find the vertex and state whether it is a maximum or minimum.

$$g(x) = 2(x-1)^2 + 2$$

$$vertex = (h, k) = (1, 2)$$

a = 2, no reflection

vertex: (1,2), minimum

$$f(x) = -x^2 + 6x + 3$$

$$x = -\frac{b}{2a} = -\frac{6}{2(-1)} = \frac{-6}{-2} = 3$$

$$y = -1(3)^2 + 6(3) + 3 = 12$$

 $a = -1 \rightarrow x - axis \ reflection$

vertex: (3,12), maximum

Find the zeros of the function.

$$p(x) = -2x^2 + 4x + 6$$

$$0 = -2x^{2} + 4x + 6$$

$$0 = -2(x^{2} - 2x - 3)$$

$$0 = -2(x - 3)(x + 1)$$

$$-2 \neq 0, \quad x - 3 = 0, \quad x + 1 = 0$$

$$x = 3 \qquad x = -1$$

zeros:-1,3

Find the zeros of the function.

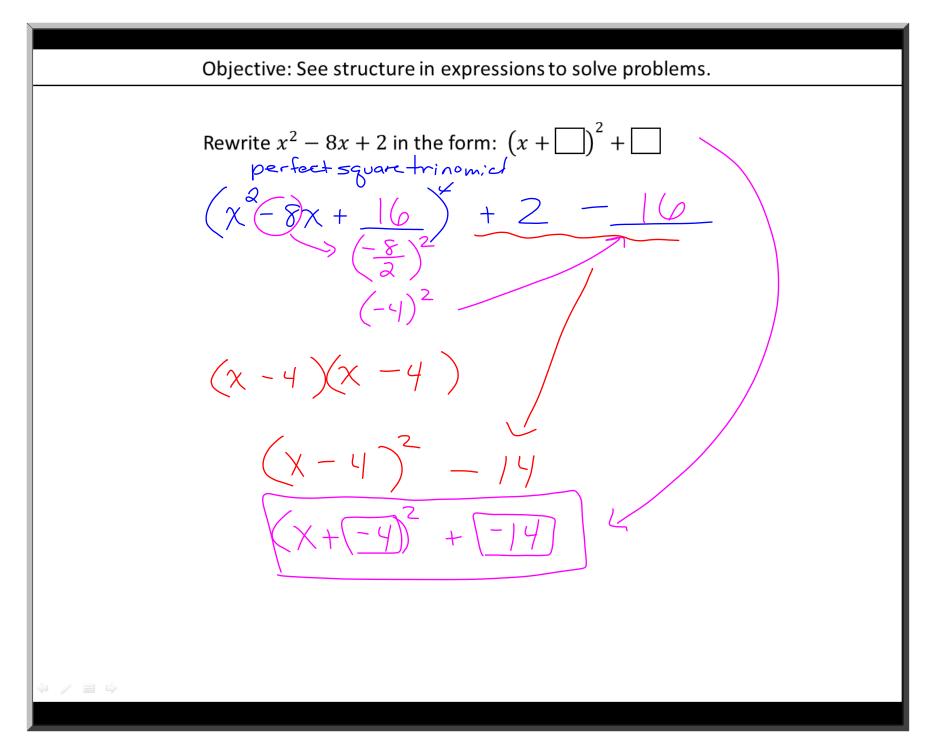
$$g(x) = x^3 - 7x^2 - 8x$$

$$0 = x^{3} - 7x^{2} - 8x$$
$$0 = x(x^{2} - 7x - 8)$$
$$0 = x(x - 8)(x + 1)$$

$$x = 0$$
, $x - 8 = 0$, $x + 1 = 0$

$$x = 8$$
 $x = -1$

zeros: -1, 0, 8



What is the factored form of $x^2 - 121y^2$?

$$(x)^2 - (11y)^2$$

$$(x+11y)(x-11y)$$

Rewrite the expression in simplest form.

$$\frac{x^2 - 2x - 8}{x^2 - 16}$$

$$\frac{(x-4)(x+2)}{(x-4)(x+4)} = \boxed{\frac{x+2}{x+4}}$$

What are the excluded x values of the expression? Explain your reasoning.

The excluded x values are -4 and 4 because they make the denominator of the original expression equal to 0.

Which of the following are equivalent to the given expression?

$$(x+6)^2 - (x-2)(x+6)$$

A)
$$8x + 48$$

A)
$$8x + 48$$

B) $(x+6)[(x+6)-(x-2)]$

C)
$$8(x+6)$$

$$D) 4(2x+12)$$

They are all equivalent to the given expression: A,B,C, and D.

What is the simplest form of
$$(5 - x + 2x^2) - (3x + 7) - (x^2 - 2)$$
?

$$5-x+2x^2-3x-7-x^2+2$$

$$x^2-4x$$

What is the simplest form of $(x^2x^5y^3)^3$?

$$(x^{2+5}y^3)^3 \to (x^7y^3)^3 \to x^{7\cdot3}y^{3\cdot3} \to x^{21}y^9$$

What is the simplest form of $\left(\frac{x^8}{x^2}\right)^2$?

$$\left(x^{8-2}\right)^2 \to \left(x^6\right)^2 \to x^{6\cdot 2} \to \boxed{x^{12}}$$

Which of the following equations are true for all values of x?

a)
$$2^{4x} = 4^{2x} \rightarrow 16^x = 16^x$$

b)
$$6^x = 3^{2x} \rightarrow 6^x = 9^x$$

c)
$$2^{3x} = 8^x \longrightarrow 8^x = 8^x$$

d)
$$3^{3x} = 9^x \rightarrow 27^x = 9^x$$

a and c

Choose the domain for each function.

$f(x) = \sqrt{x - 3}$	<i>x</i> ≠ 3	<i>x</i> ≠ 4	$x \ge 3$	$x \ge 3,$ $x \ne 4$
$f(x) = \frac{x-3}{x-4}$	$x \neq 3$	<i>x</i> ≠ 4	$x \ge 3$	$x \ge 3,$ $x \ne 4$
$f(x) = \frac{x-4}{x-3}$	<i>x</i> ≠ 3	<i>x</i> ≠ 4	<i>x</i> ≥ 3	$x \ge 3,$ $x \ne 4$
$f(x) = \frac{\sqrt{x-3}}{x-4}$	<i>x</i> ≠ 3	$x \neq 4$	<i>x</i> ≥ 3	$x \ge 3$, $x \ne 4$